• Partial Derivatives:

o Take the derivative of one variable while holding all else constant.

$$\circ \frac{\partial}{\partial x_1} f(x_1, x_2, ..., x_n) = \lim_{h \to 0} \frac{f(x_1 + h, x_2, ..., x_n) - f(x_1, x_2, ..., x_n)}{h}$$

$$\circ \quad \text{Notation: } \frac{\partial}{\partial x_1} f(x_1, x_2, ... x_n) = \frac{\partial f}{\partial x_1} = f_{x_1}$$

- Second order partials
- **Differentiability**: A function $f(x_1, x_2, ..., x_n)$ is differentiable at $(a_1, a_2, ..., a_n)$ iff

$$f_{x_1}(a_1, a_2, ... a_n), f_{x_2}(a_1, a_2, ... a_n), ... f_{x_n}(a_1, a_2, ... a_n)$$
 all exist and

$$\lim_{(x_1, x_2, \dots, x_n) \to (a_1, a_2, \dots, a_n)} \frac{f(x_1, x_2, \dots, x_n) - f(a_1, a_2, \dots, a_n) - \nabla f(a_1, a_2, \dots, a_n) \cdot \langle x_1 - a_1, x_2 - a_2, \dots, x_n - a_n \rangle}{\left| \langle x_1 - a_1, x_2 - a_2, \dots, x_n - a_n \rangle \right|} = 0$$

• Chain Rule

• Example: Let
$$z = f(x, y)$$
, where $x = g(t)$ and $y = h(t)$. Then $\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

- Use tree diagram to help conceptualize.
- Partial derivative of $f(x_1, x_2, ... x_n)$ with respect to $t := \nabla f \cdot \vec{r}'(t)$

• Implicit Differentiation

- Shortcut of the Calc I way.
- O Use chain rule!

- o Extend to *n* variables.
- **Del operator**: $\nabla = \left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, ..., \frac{\partial}{\partial x_n} \right\rangle$.
 - o Note: ∇ is an **operator**, not an actual function or value.
- Gradient Vector: If $f(x_1, x_2, ... x_n)$, then $\nabla f = \langle f_{x_1}, f_{x_2}, ... f_{x_n} \rangle$.
 - O Note: ∇f is normal to $f(x_1, x_2, ... x_n) = k$ in n-space
 - Applicably, ∇f is normal to level curves and surfaces (use ∇f to find tangent planes and lines).
 - Extend this concept to a function of n variables ∇f is always normal to the level hypersurface $f(x_1, x_2, ..., x_n) = k$.
- **Directional Derivatives**: The derivative of $f(x_1, x_2, ..., x_n)$ in the direction $\hat{u} = \langle a_1, a_2, ..., a_n \rangle$ in n-space, where \hat{u} is a unit vector, is $D_{\hat{u}} f = \nabla f \cdot \hat{u}$.